Lecture 16: Chip Finishing

Matthew Guthaus Professor UCSC, Computer Science & Engineering <u>http://vlsida.soe.ucsc.edu</u> mrg@ucsc.edu

GDS Generation

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

CMP & Area Fill

Chemical-Mechanical Planarization (CMP) Polishing pad wear, slurry composition, pad elasticity make this a very difficult process step

Tiling for ILD (AI Metallurgy)

- Single Material Polish: A Linear Model is Sufficient
- Cumulative Effect Also Captured by Linear Models

Tiling for Copper CMP

- Tiling and Slotting: Both Oxide Erosion and Copper Dishing need to be controlled.
- Three Polish Stages: Overburden copper removal, Barrier removal, and Oxide over polish.
- Planarity Solution Research Topic

Density Computation

Density Control Objectives

Objective for Manufacture = Min-Var [Kahng et al., TCAD'02] minimize window density variation subject to upper bound on window density

Objective for Design = Min-Fill [Wong et al, DAC'00]

minimize total amount of added fill subject to UB on window density variation

M5 Fill Example

	20000000000000000000000000000000000000
	888888888888888888888888888888888888888
92222222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	20
	300000000000000000000000000000000000000
	382828282828282828282 382828282828282828
	² 9898888888888888888888888888888888888
000000000000000000000000000000000000000	00000000000000000000000000000000000000
3888888888888888888888888	888888888888888888888888888888888888888
20000000000000000000000000000000000000	20202020202020202020202020202020202020
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000

Complex Fill Example

Issues with Fill

- Adds coupling capacitance
 - Now need to extract + signoff again
 - Timing-driven fill insertion

Tiling and its Impact on PD

The Tiling Problem:

Given a layout and a CMP model, determine the location and amount of dummy features needed to achieve a planarity target, and then modify the layout accordingly.

- Planarity Target <-> PD Resolution Requirement
- Application: ILD, STI, and Copper Tiling
- Tiling Effectively Modifies the Physical Design
 - Reticle/Die Array on Wafer Level Design
- Mask Inspection Issues (die to die matching)

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

Antenna rules (an ERC)

- Charging in semiconductor processing
 - Many process steps use plasmas, charged particles
 - Charge collects on conducting poly, metal surfaces
 - Large amounts of charge on poly can create huge E-fields across the thin gate oxide and lead to breakdown
 - Amount of charge collected is proportional to area of conductors
- Important ratio: antenna ratio defined as:
 - $(A_{poly} + A_{M1} + ...) / A_{gate_ox}$
 - $-A_{Mx}$ = metal x area electrically connected to node
 - This is very conservative as higher levels of metal can alleviate the problem
 - If a diode is attached along the line, antenna rules are relaxed
 - Provides a low impedance path for large amounts of charge to be removed from the conductor

Antenna rules (an ERC)

- Reactive ion etch charges up metal lines
- Charge can accumulate and zap a gate oxide
- If a gate sees a long metal before a diffusion does

Safe: m3 is too short to accumulate very much charge; won't kill gate

Dangerous: lots of m3; will probably accumulate lots of charge and then blow oxide

Antenna rules (an ERC)

- Two solutions: bridging and node diodes
 - Bridging attaches a higher layer intermediary
 - Diode is a piece of diffusion to leak away charge

Bridging keeps gate away from long metals until they drain through the diffusion

Node diodes are inactive during chip operation (reverse-biased p/n); let charge leak away harmlessly

Sky130 Diode Cell

Yellow "diode" layer diff + nsdm + substrate

OpenLane Diode Options

DIODE_INSERTION_STRATEGY Variable

- 1. No diode insertion is done.
- 2. A diode is inserted for each PIN and connected to it.
- 3. A fake diode is inserted for each PIN and connected to it, then after an antenna check is run and the fake diodes are replaced with real ones if the pin is violated.
- 4. Rely on OpenROAD:FastRoute antenna avoidance flow to insert the diodes during global routing by using the Antenna Rule Checker and fixing violations. You can execute this iteratively by setting GRT_MAX_DIODE_INS_ITERS, it is capable to detect any divergence, so, you will probably end up with the lowest # of Antenna violations possible.
- 5. A smarter version of strategy 1 that attempts to reduce the number of inserted diodes and places a diode at each design pin.
- 6. A variant of 2 utilizing the script used in strategy 4.

How many diodes are inserted?

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

Latch Up (an ERC)

- Causes shorting of VDD & VSS lines
- Result:
 - Destroys chip or
 - Causes system failure must power down to fix
- Control with process innovations & circuit design

Parasitic Transistor Location

Solutions to Latchup

- Solutions:
 - Reduce R values
 - Reduce bipolar transistor gains
- Prevention:
 - Latchup-resistant
 CMOS processes
 - Layout techniques

Well Contacts

Sky130 "tap" Cell

Sky130 Tap Cell

Latch-Up Workshop

systems, verification IP, build flows, SoCs, simulators, synthesis tools, FPGA and ASIC implementation tools, languages and DSLs, compilers, or anything related we'd love to have you join us to share your experience.

Presentations are submitted through the registration process and we will let you know if your presentation was accepted.

Latch-Up is an excellent opportunity for sponsors to show their support for the open source silicon community. Interested? Read our sponsorship flyer

About

Submit a talk

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

P/G Mesh (Grid Distribution)

- Power/Ground mesh will allow multiple paths from P/G sources to destinations
 - Less series resistance
 - Hierarchical power and ground meshes from upper metal layers to lower metal layers
 - All the way to M1 or M2 (standard cells)
 - Connection of lower layer layout/cells to the grid is through vias

Sky130 Power Supply

Power Supply Networks

Electrical Representation of IC Power Grid₁

- Supplies power to ICs
- Components:
 - C4 Bumps Ideal Power Source with an inductor and resistor
 - Transistors Current source
 - Decoupling Capacitances
 - Interconnect Resistors

Power Supply Network Constraints

As transistors turn on the transient voltage droops

Dimensions in μm and colorbar in Volts. Low Voltages might lead to timing problems

- Voltage Droop: All node transient voltages have to be above a specified threshold
- Static IR Drop: All node voltages have to be above a specified threshold
- Electromigration: Current constraint on interconnect

OpenLane Power Density

Decoupling Capacitance

- Capacitor supplies power during transition periods until DC power can "catch up"
 - Size based on charge, frequency, etc.
- · Often used in board-level design

Sky130 Decap Cells

LI-Poly-Diff Cap

Today's Lecture

- Metal Density
- Antenna Checks
- · Latch-Up
- IR Drop/Decoupling Capacitance
- Electromigration

Electromigration

- Two parts
 - "Hillocks" cause shorts
 - "Voids" cause opens
- Factors
 - Wire material
 - Temperature
 - Wire size
 - Current (peak, avg, RMS)

Electromigration in IC interconnect, a byproduct of large chip interconnect currents/temperatures.

Image from <u>http://cc.ee.ntu.edu.tw/~ywchang/</u> <u>Courses/VIsi2k/pictures.html</u>.

Next Lecture

Design for Manufacturing

