
Lecture 15: Buffering

Matthew Guthaus
Professor

UCSC, Computer Science & Engineering
http://vlsida.soe.ucsc.edu

mrg@ucsc.edu

http://vlsida.soe.ucsc.edu

Today’s Lecture
• Cascaded Buffers

– Driving large capacitive loads
• Repeaters

– Driving long wires
• Generalized Buffering

– Capacitive shielding
– Driving fanout with varying criticalities
– Van Ginneken algorithm

2

Today’s Lecture
• Cascaded Buffers

– Driving large capacitive loads
• Repeaters

– Driving long wires
• Generalized Buffering

– Capacitive shielding
– Driving fanout with varying criticalities
– Van Ginneken algorithm

3

Linear Gate Delay Model

4

● Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). Logical Effort: Designing Fast CMOS Circuits.
Morgan Kaufmann. ISBN 1-55860-557-6.

Cout

https://books.google.com/books?id=hGVWzQmQYP0C&dq=logical+effort+cmos&pg=PP1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-557-6

Self Loading: Another View

5

(for fixed
load)

Self-loading effect:
Intrinsic capacitance
(Cp) dominatesde

la
y

size

Intuition Check

6

• Driving a big capacitor requires a big
buffer/inverter

• A big buffer/inverter has a big input
capacitance and will slow the previous
stage

• What to do?

Cout Cout

? ?

Multistage drivers

7

Big Capacitance

⍴

⍴

⍴

• Each stage “ramps up” to a bigger buffer (or
inverter)
– Small capacitance on first stage
– Big buffer on last stage

• What is the ideal “ramp up”?

Best Ratio of Sizes
• Formulate equation with N stages with

linear delay model and solve to minimize
delay

• Has no closed-form solution

• Pinv is the parasitic delay (RCp)
• Neglecting parasitic delay (Pinv = 0)

– ρ = 2.718 (e)
• For Pinv = 1, solve numerically

– ρ = 3.59

8

● Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). Logical Effort: Designing Fast CMOS Circuits.
Morgan Kaufmann. ISBN 1-55860-557-6.

https://books.google.com/books?id=hGVWzQmQYP0C&dq=logical+effort+cmos&pg=PP1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-557-6

Best Number of Stages
• How many stages should a driver use?

– Minimizing number of stages is not always fastest
– Each stage should “ramp up” equally

• Example: drive 64-bit datapath with unit inverter
• Brute force:

– N is number of stages
– f is ratio of output to input “size”
– D is delay

Best Number of Stages
• Equally divide the ratio of sizes

– log3.59(64) ≅log4(64) = 3
• How to compute arbitrary logs:

– log4(64)= log(64)/log(4)

10

● Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). Logical Effort: Designing Fast CMOS Circuits.
Morgan Kaufmann. ISBN 1-55860-557-6.

https://books.google.com/books?id=hGVWzQmQYP0C&dq=logical+effort+cmos&pg=PP1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-557-6

Today’s Lecture
• Cascaded Buffers

– Driving large capacitive loads
• Repeaters

– Driving long wires
• Generalized Buffering

– Capacitive shielding
– Driving fanout with varying criticalities
– Van Ginneken algorithm

11

0.18

Source: Gordon Moore, Chairman Emeritus, Intel Corp.

0
50

100
150
200
250
300

Technology generation (μm)

D
el

ay
 (p

se
c)

Transistor/Gate delay

Interconnect delay

0.8 0.5 0.250.2
5

0.1
50.35

Why is this trend?

Dennard Scaling
• Ideal process scaling:

– Device geometries shrink by s (= 0.7x)
• “Moore’s Law”
• Device delay shrinks by s

– Wire geometries shrink by s (or σ)
• Unit resistance R : ρ/(ws.hs) = r/s2

• Unit coupling capacitance
 Cc : (hs)/(Ss)
• Resistance doubled, capacitance roughly

unchanged for unit length
• How about the change in wire length?

s2 = 0.72 = 0.49

Wire length scaling

• Global (long) interconnect lengths don’t shrink
– Global interconnect link cells far apart
– Maximum chip size stays roughly the same (more transistors

though!)
• Local (short) interconnect lengths shrink by s

– Local interconnects link cells nearby

Interconnect delay scaling
• Delay of a wire of length l :

τint = (rl)(cl) = rcl2 (a quadratic function of length)

• Local interconnects :
τint : (r/s

2)(c)(ls)2 = rcl2

– Local interconnect delay unchanged (s2 cancels out)

• Global interconnects :
τint : (r/s

2)(c)(l)2 = (rcl2)/s2

– Global interconnect delay doubled – unsustainable!

• Interconnect delay increasingly more dominant

Elmore Delay for Wire

x

C

unit wire capacitance c
unit wire resistance r

Above assumes a “pi”
model for the wire

Elmore Delay for Buffer

v

C

u

Driving resistanceInput capacitance

Elmore Delay for A Circuit
• Delay = Σall Ri Σall Cj downstream from Ri Ri*Cj
• Elmore delay to n1 R(B)*(C1+C2)
• Elmore delay to n2 R(B)*(C1+C2)+R(w)*C2

Unbuffered Wire Delay

19

t_unbuf = R(cx + C) + rx(cx/2 + C)

Buffered Wire Delay

t_buf = 2R(cx/2 + C) + rx(cx/4 + C)

Buffered global interconnects: Intuition

Interconnect delay = r.c.l2/2

Interconnect delay = Σ r.c.li
2 /2 < r.c.l2 /2 (where l = Σ lj)

 since Σ (lj
2) < (Σ lj)

2

(Of course, we need to consider buffer delay as well)

l1 lnl3l2

l

Buffers Reduce Wire Delay

t_unbuf = R(cx + C) + rx(cx/2 + C)

t_buf = 2R(cx/2 + C) + rx(cx/4 + C)

t_buf – t_unbuf = RC – rcx2/4
x

∆t

Buffer delay Reduced wire delay

When does it make sense to use a buffer? x = ?

What is the optimal length?

23

• Can compute based on R, C of wire and
gate

• However, it is ok to approximate and loss
of delay is not bad
– ~0.5mm?
– A few 100um?

• In general, the tools approach it in
another way.

Buffer Placement
• The previous formulations assume that

you can put a buffer anywhere.
– What if there are a limited number of open

spaces?

• New problem: Timing driven buffer
placement and sizing.
– Uses Static Timing Analysis!

Today’s Lecture
• Cascaded Buffers

– Driving large capacitive loads
• Repeaters

– Driving long wires
• Generalized Buffering

– Capacitive shielding
– Driving fanout with varying criticalities
– Van Ginneken algorithm

25

RAT: Required Arrival Time

RAT = 100

Wire delay = 80

AT = 0

RAT = 100

Wire delay = 80

AT = 0

RAT = 20 AT = 80

Slack: RAT - AT

RAT = 100

Wire delay = 80

AT = 0

RAT = 20 AT = 80

Slack = 20 Slack = 20

Minimizing circuit delay = maximizing RAT at driver = maximizing slack at driver

An Example for Buffer Insertion

(v1, 1, 20)22

v1 v1

(v2, 3, 16)

• r = 1, c = 1
• Rb = 1, Cb = 1
• Rd = 1

(v2, 1, 13)

v1

(v3, 5, 8)
v1

(v3, 3, 9)

slack = 6slack = 3

Add wire

Add wire

Insert buffer
Add wire

Add driver Add driver

C Q

Capacitance Shielding

29

Decouple capacitive
load from critical path

Critical Path

Critical Path

Makes sense if buffer input capacitance is
less than fanout cap and wire

Motivation for Problem Formulation

RAT = 300
AT = 350
Slack = RAT-AT= -50

RAT = 700
AT = 600
Slack = 100

RAT = 300
AT = 250
Slack = 50

RAT = 700
AT = 400
Slack = 300

slack = -50

slack = 50
Decouple capacitive
load from critical path

RAT = Required Arrival Time

Slack = RAT - AT

We need to maximum slack or RAT at driver

General Timing Driven Buffering Problem

• Given
– A Steiner tree
– RAT at each sink
– A buffer type
– RC parameters
– Candidate buffer locations

• Find buffer insertion solution such that the
slack (or RAT) at the driver is maximized

Candidate Buffering Solution

• Definition
• Each candidate

solution is
associated with
– vi: a node
– ci: downstream

capacitance
– qi: RAT

vi is a sink
ci is sink capacitance

v is an internal node

Van Ginneken’s Algorithm

Candidate solutions are
propagated toward the source

Generating Candidates

(1)

(2)

(3)

Exponential Runtime

2
solutions

4
solutions

8
solutions

16
solutions

n candidate buffer locations lead to 2n solutions

Solution Pruning
• Two candidate solutions

– (v, c1, q1)
– (v, c2, q2)

• Solution 1 is inferior if
– c1 ≥ c2 : larger load
– and q1 ≤ q2 : tighter timing

• I.e., it keeps “pareto optimal” solutions
only!

Pruning When Insert Buffer

They have the same load cap Cb,
only the one with max q is kept

Pruning Candidates

(3)

(a) (b)

Both (a) and (b) “look” the same to the
source.
Throw out the one with the worse slack

(4)

Candidate Example Continued

(4)

(5)

Candidate Example Continued

After pruning

(5)

At driver, compute which candidate maximizes
slack. Result is optimal.

Next Lecture
• Chip finishing

41

