# Lecture 15: Buffering

Matthew Guthaus Professor UCSC, Computer Science & Engineering <u>http://vlsida.soe.ucsc.edu</u> mrg@ucsc.edu



## Today's Lecture

- Cascaded Buffers
  - Driving large capacitive loads
- Repeaters
  - Driving long wires
- Generalized Buffering
  - Capacitive shielding
  - Driving fanout with varying criticalities
  - Van Ginneken algorithm



## Today's Lecture

- Cascaded Buffers
  - Driving large capacitive loads
- Repeaters
  - Driving long wires
- Generalized Buffering
  - Capacitive shielding
  - Driving fanout with varying criticalities
  - Van Ginneken algorithm



#### Linear Gate Delay Model



$$d \propto \frac{R}{s}(sC_p + C_{out})$$

 Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann. ISBN 1-55860-557-6.



#### Self Loading: Another View





#### Intuition Check

- Driving a big capacitor requires a big buffer/inverter
- A big buffer/inverter has a big input capacitance and will slow the previous stage
- · What to do?









?

#### Multistage drivers

- Each stage "ramps up" to a bigger buffer (or inverter)
  - Small capacitance on first stage
  - Big buffer on last stage
- What is the ideal "ramp up"?





# **Best Ratio of Sizes**

- Formulate equation with N stages with linear delay model and solve to minimize delay
- Has no closed-form solution

 $p_{inv} + \rho \left(1 - \ln \rho\right) = 0$ 

- P<sub>inv</sub> is the parasitic delay (RC<sub>p</sub>)
   Neglecting parasitic delay (P<sub>inv</sub> = 0)
- $-\rho = 2.718$  (e)
- For  $P_{inv} = 1$ , solve numerically  $- \rho = 3.59$

Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann. ISBN 1-55860-557-6.



# **Best Number of Stages**

f

- How many stages should a driver use?
  - Minimizing number of stages is not always fastest
  - Each stage should "ramp up" equally
- Example: drive 64-bit datapath with unit inverter
- Brute force:
  - N is number of stages
  - f is ratio of output to input "size"
  - D is delay





#### **Best Number of Stages**

- Equally divide the ratio of sizes  $- \log_{359}(64) \cong \log_4(64) = 3$  How to compute arbitrary logs:  $-\log_4(64) = \log(64)/\log(4)$ InitialDriver  $\partial D$ = 0 $\partial N$ N - n, ExtraInverters Logic Block: DatapathLoad n,Stages Path Effort F N: 2.8D' 18 15.3Fastest
  - Sutherland, Ivan E.; Sproull, Robert F.; Harris, David F. (1999). *Logical Effort: Designing Fast CMOS Circuits*. Morgan Kaufmann. ISBN 1-55860-557-6.



## Today's Lecture

- Cascaded Buffers
  - Driving large capacitive loads
- Repeaters
  - Driving long wires
- Generalized Buffering
  - Capacitive shielding
  - Driving fanout with varying criticalities
  - Van Ginneken algorithm



#### Why is this trend?



Source: Gordon Moore, Chairman Emeritus, Intel Corp.



#### **Dennard Scaling**

#### Ideal process scaling:

- Device geometries shrink by s (= 0.7x)
  - "Moore's Law"
  - Device delay shrinks by s
- Wire geometries shrink by s (or  $\sigma$ )
  - Unit resistance  $R : \rho/(ws.hs) = r/s^2$
  - Unit coupling capacitance Cc : (hs)/(Ss)
  - Resistance doubled, capacitance roughly unchanged for unit length
  - How about the change in wire length?





#### Wire length scaling



- Global (long) interconnect lengths don't shrink
  - Global interconnect link cells far apart
  - Maximum chip size stays roughly the same (more transistors though!)
- Local (short) interconnect lengths shrink by s
  - Local interconnects link cells nearby



#### Interconnect delay scaling

- Delay of a wire of length / :
   τ<sub>int</sub> = (rl)(cl) = rcl<sup>2</sup>
   (a quadratic function of length)
- Local interconnects : τ<sub>int</sub> : (r/s<sup>2</sup>)(c)(ls)<sup>2</sup> = rcl<sup>2</sup>
  - Local interconnect delay unchanged (s<sup>2</sup> cancels out)
- Global interconnects : τ<sub>int</sub> : (r/s<sup>2</sup>)(c)(l)<sup>2</sup> = (rcl<sup>2</sup>)/s<sup>2</sup>
  - Global interconnect delay doubled unsustainable!
- Interconnect delay increasingly more dominant



#### **Elmore Delay for Wire**



Above assumes a "pi" model for the wire





#### Elmore Delay for Buffer

$$delay(u,v) = R(b)C$$

$$C(u) = C(b)$$
f
Input capacitance Driving resistance



#### Elmore Delay for A Circuit

- Delay =  $\Sigma_{all Ri} \Sigma_{all Cj downstream from Ri} Ri^*Cj$
- Elmore delay to n1 R(B)\*(C1+C2)
- Elmore delay to n2 R(B)\*(C1+C2)+R(w)\*C2





#### **Unbuffered Wire Delay**



#### $t_unbuf = R(cx + C) + rx(cx/2 + C)$



#### **Buffered Wire Delay**



#### $t_buf = 2R(cx/2 + C) + rx(cx/4 + C)$



#### Buffered global interconnects: Intuition



Interconnect delay =  $r.c.l^2/2$ 



Interconnect delay =  $\Sigma r.c.l_i^2/2 < r.c.l^2/2$  (where  $I = \Sigma I_j$ ) since  $\Sigma (I_j^2) < (\Sigma I_j)^2$ 

(Of course, we need to consider buffer delay as well)



#### **Buffers Reduce Wire Delay**

$$t\_unbuf = R(cx + C) + rx(cx/2 + C)$$
  
 $t\_buf = 2R(cx/2 + C) + rx(cx/4 + C)$   
 $t\_buf - t\_unbuf = RC - rcx^2/4$ 



Buffer delay

Reduced wire delay

When does it make sense to use a buffer? x = ?



### What is the optimal length?

- Can compute based on R, C of wire and gate
- However, it is ok to approximate and loss of delay is not bad
  - ~0.5mm?
  - A few 100um?
- In general, the tools approach it in another way.



#### **Buffer Placement**

- The previous formulations assume that you can put a buffer anywhere.
  - What if there are a limited number of open spaces?
- New problem: Timing driven buffer placement and sizing.
  - Uses Static Timing Analysis!



## Today's Lecture

- Cascaded Buffers
  - Driving large capacitive loads
- Repeaters
  - Driving long wires
- Generalized Buffering
  - Capacitive shielding
  - Driving fanout with varying criticalities
  - Van Ginneken algorithm



#### **RAT: Required Arrival Time**





#### Slack: RAT - AT



Minimizing circuit delay = maximizing RAT at driver = maximizing slack at driver



#### An Example for Buffer Insertion





#### **Capacitance Shielding**



less than fanout cap and wire



#### Motivation for Problem Formulation





#### General Timing Driven Buffering Problem

- Given
  - A Steiner tree
  - RAT at each sink
  - A buffer type
  - RC parameters
  - Candidate buffer locations



 Find buffer insertion solution such that the slack (or RAT) at the driver is maximized



#### **Candidate Buffering Solution**

- Definition
- Each candidate solution is associated with
  - $-v_i$ : a node
  - c<sub>i</sub>: downstream
     capacitance
  - $-q_i$ : RAT







#### Van Ginneken's Algorithm





#### **Generating Candidates**





#### **Exponential Runtime**



#### n candidate buffer locations lead to 2<sup>n</sup> solutions



#### **Solution Pruning**

- Two candidate solutions
  - $-(V, C_1, q_1)$  $-(V, C_2, q_2)$
- Solution 1 is inferior if
  - $-c_1 \ge c_2$ : larger load
  - and  $q_1 \leq q_2$ : tighter timing
- I.e., it keeps "pareto optimal" solutions only!



#### **Pruning When Insert Buffer**





#### **Pruning Candidates**



Both (a) and (b) "look" the same to the source.

Throw out the one with the worse slack





#### **Candidate Example Continued**





#### **Candidate Example Continued**



At driver, compute which candidate maximizes slack. Result is optimal.



#### Next Lecture

Chip finishing

