
Lecture 12: Placement

Matthew Guthaus
Professor

UCSC, Computer Science & Engineering
http://vlsida.soe.ucsc.edu

mrg@ucsc.edu

http://vlsida.soe.ucsc.edu

Today’s Lecture
• Good vs Bad Placements
• Partitioning
• A few placement algorithms

– Recursive Bipartitioning Placement
– Analytical (Quadratic) Placement
– Simulated Annealing Placement

• OpenLane Placement

2

Placement Problem
• Input:

– A set of cells and their complete information (a cell library).
– Connectivity information between cells (netlist information).

• Output:
– A set of locations on the chip: one location for each cell.

• Goal:
– The cells are placed to produce a routable chip that meets timing

and other constraints (e.g., low-power, noise, etc.)

• Challenge:
– The number of cells in a design is very large (> 1 million).
– The timing constraints are very tight.

3

Placement Problems

4

3/24/202
3 Placement 5

Region Assignment

Global and Detailed Placement
• In global placement, we

decide the approximate
locations for cells by placing
cells in global bins.
– Overlapping is ok and exact

positions are not known
– Closely resembles

partitioning!
• In detailed placement, we

make some local
adjustment to obtain the
final non-overlapping
placement.
– Legalization is what

determines the final
non-overlapping placement

6

Placement Examples

7

bad placement good placement

What makes a good placement?

Metrics: Area & Overlap
• Area

– Excessive space between cells will be a
waste.

• Overlap
– Cells must not overlap to have a legal

placement. (DRC errors!)

8

Metrics: Wire Length
• Minimizing wire length may reduce:

– Delay
– Total Power
– Congestion

• But, not really.

9

Metrics: Wire Length
• Routing is complex (more later), so

estimate wire lengths
– HPWL fine for few points
– More during routing lecture…

10

Different Routing Models

11

A bounding box routing model A MST+shortest_path routing model

Metrics: Congestion

12

Routing demand = 3
Assume routing supply is 1,
overflow = 3 - 1 = 2 on this edge.

Overflow = overflowΣ
all edges

Overflow on each edge =

Routing Demand - Routing Supply
 (if Routing Demand > Routing Supply)
0 (otherwise)

Congestion Minimization
• Traditional placement problem is to minimize

interconnection length (wirelength)
• A valid placement has to be routable
• Congestion is important because it represents

routability (lower congestion implies better
routability)

• Congestion is often difficult around certain areas
– Macro pins
– Dense pin areas
– High net to cell ratio

13

Metrics: Timing
• Perform STA during placement!

– Incremental placement is useful
– What about buffering of long nets?

• How to incorporate timing into
placement?
– Chicken and Egg: need placement for timing,

but need timing for placement.
– Usually this is done iteratively with net

weights

14

Closely Related: Partitioning
• Decomposition of a complex system into

smaller subsystems
– Done hierarchically
– Partitioning done until each subsystem has

manageable size
– Each subsystem can be designed independently

• Interconnections between partitions
minimized
– Less hassle interfacing the subsystems
– Communication between subsystems usually

costly
– Time-budgeting

15

Example: Partitioning of a Circuit

Input size: 48

Cut 1=4
Size 1=15

Cut 2=4
Size 2=16 Size 3=17

16

Logical Hierarchy vs Partitioning
• Sometimes logical hierarchy is not

balanced.
– Partitions based on function, not structure.
– A few lines of Verilog (e.g. a memory) can be

significantly larger which results in
unbalanced partitions.

• Logical hierarchy is easier to understand,
however.

17

Partitioning-based Approach
• Try to group closely connected modules

together.
• Repetitively divide a circuit into

sub-circuits such that the cut value is
minimized.

• The placement region is partitioned by
cutlines (need not be balanced).

• Each sub-circuit is assigned to one
partition of the placement region.

• Note: Also called min-cut placement
approach.

18

An Example

Circuit

Placement

Cutline

19

Partitioning Algorithms
Min-cut partitioning is a general CS problem
and has very good, fast (polynomial time)
solutions
• Fiduccia-Mattheyses (FM) Algorithm
• Kernighan-Lin (KL) Algorithm
• Network Flow
• Spectral Partitioning
• Multilevel Partitioning
Partitioning with other constraints, such as
for placement, however, is harder.

20

Problem of Partitioning Subcircuits

A B

A B

A

B

Cost of these 2 partitionings are not the same.

21

Pros/Cons of Partition-based
• Pros

– Very fast

• Cons
– Not stable (different solutions with minor

changes) for some algorithms
• Multiple restart technique
• How to seed the partition?

– Timing metric is hard
• Number of cuts on a given net, not just “is it cut?”

22

Analytical Placement
• Write down the placement problem as an

analytical mathematical problem
• Solve the placement problem directly
• Example:

– Sum of squared wire length is quadratic in the
cell coordinates.

– So the wirelength minimization problem can
be formulated as a quadratic program.

– It can be proved that the quadratic program is
convex, hence polynomial time solvable

23

Toy 1-D Example

x2x1

x=100 x=200

(Partial w.r.t. x1)

(Partial w.r.t. x2)

24

x2x1

x=100 x=200

Interpretation of matrices A and B:

The diagonal values A[i,i] correspond to the number of connections to xi
The off diagonal values A[i,j] are -1 if object i is connected to object j, 0 otherwise
The values B[i] correspond to the sum of the locations of fixed objects connected to object i

(Scaled by ½)

25

Why formulate the problem this way?

• Because we can
• Because it is trivial to solve
• Because there is only one solution
• Because the solution is a global optimum
• Because the solution conveys “relative

order” information
• Because the solution conveys “global

position” information

26

Gordian: A Quadratic Placement Approach

• Global optimization:
solves a sequence of quadratic
programming problems

• Partitioning:
enforces the non-overlap constraints

Ref. 1: Gordian: VLSI Placement by Quadratic Programming and slicing
Optimization, by J. M. Kleinhans, G.Sigl, F.M. Johannes, K.J. Antreich IEEE Trans. On CAD,
March 1991. pp 356-365

Ref. 2: Analytical Placement: A Linear or a Quadratic Objective
Function? By G. Sigl, K. Doll, F.M. Johannes, DAC’91 pp 427-423

27

Solution of the Original QP

28

Partitioning
• Find a good cut direction and position.
• Improve the cut value using iterative

partitioning.

29

• Before every level of partitioning, do the Global
Optimization again with additional constraints that the
center of gravities should be in the center of regions.

• Always solve a single QP (i.e., global).

Applying the Idea Recursively

Center of Gravities

30

Pro/Con of Quadratic
• Pros:

– mathematically well behaved
– efficient solution techniques find global optimum
– great quality

• Cons:
– solution of Ax + B = 0 is not a legal placement, so generally

some additional partitioning techniques are required.
– solution of Ax + B = 0 is that of the "mapped" problem, i.e., nets

are represented as cliques, and the solution minimizes wire length
squared, not linear wire length unless additional methods are
deployed

– fixed IOs are required for these techniques to work well
• but shouldn’t the IOs depend on the placement? Chicken and egg.

31

Simulated Annealing

32

Solution Space
• All possible arrangements of modules into

rows possibly with overlaps
• In practice, can discretize the x locations

to a multiple or fraction of the minimum
cell width.

33

white = cells
black = space
lines = overlap

Neighboring Solutions

34

Move Selection
• Timberwolf first tries to select a move

between M1 and M2
• Prob(M1)=4/5
• Prob(M2)=1/5

• If a move of type M1 is chosen (for
certain module) and it is rejected, then a
move of type M3 (for the same module)
will be chosen with probability 1/10

• Restriction on how far a module can be
displaced

35

M1: Displacement

M2: Interchange

M3: Reflection

Annealing Schedule
• Tk = r(k)•T k-1 k= 1, 2, 3, ….
• r(k) increase from 0.8 to max value 0.94 and

then decrease to 0.1
• At each temperature, a total number of K•n

attempts is made
• n= number of modules
• K= user specified constant

36

Simulated Annealing Based Placement
• Timber wolf
• Stage 1

– Modules are moved between different rows as well as
within the same row

– Module overlaps are allowed
– when the temperature is reduced below a certain

value, stage 2 begins
• Stage 2

– Remove overlaps
– Annealing process continues, but only interchanges

adjacent modules within the same row

“The Timberwolf Placement and Routing Package”, Sechen, Sangiovanni; IEEE Journal of Solid-State Circuits, vol SC-20,
No. 2(1985) 510-522

“Timber wolf 3.2: A New Standard Cell Placement and Global Routing Package” Sechen, Sangiovanni, 23rd DAC, 1986,
432-439

37

Move Restriction
• Range Limiter

– At the beginning, R is very large, big enough to
contain the whole chip

– Window size shrinks slowly as the temperature
decreases. In fact, height and width of R ∝ log(T)

– Stage 2 begins when window size is so small that
no inter-row modules interchanges are possible

38

Cost Function
• Critical nets: Increase both αi and βi

39

Ψ = C
1
+C

2
+C

3

)(:1 iii
i

i hC βwα +∑
αi, βi are horizontal and vertical weights, respectively
αi =1, βi =1 ⇒1/2 •perimeter of bounding box

Total Cost:

Cost Function (Cont’d)

40

C2: Penalty function for module overlaps

 O(i,j) = amount of overlaps in the X-dimension
 between modules i and j

 α — offset parameter to ensure C2 → 0 when T → 0

()∑
≠

+=
ji

jiOC 2
2),(α

C3: Penalty function that controls the row lengths

 Desired row length = d(r)

 l(r) = sum of the widths of the modules in row r

∑ −=
r

rdrlC)()(3 β

Pros/Cons of SA
• Pros

– Any cost function can be handled
– Can get to optimal solution if run for long

enough

• Cons
– Slow
– Slow
– Slow
– Need to tune the probabilities, moves, etc.

41

RePlAce (Global Placement)
Analytical Placer
Demo videos:

https://github.com/The-OpenROAD-Project/
OpenROAD/blob/master/src/gpl/README.
md

42

https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/src/gpl/README.md
https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/src/gpl/README.md
https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/src/gpl/README.md

Floorplan Options
• FP_SIZING: relative or absolute

– CORE_AREA: rectangle when absolute
mode

– FP_ASPECT_RATIO: height to width ratio
(how square?) for relative

– FP_CORE_UTIL: area of cells in relative
mode

• FP_PIN_ORDER_CFG: File with
placement of IOs on sides (N, W, E, S)

• FP_IO_MODE: equidistant or not

43

Macro Options
PL_MACRO_HALO is an area “halo” around macros
(e.g. SRAMs) for routing.

PL_MACRO_CHANNEL is space between macros
for routing when macros are automatically placed.

MACRO_PLACEMENT_CFG is an optional config to
place macros at absolute locations. RECOMMEND!

44

(Some) Placement Options
PL_TARGET_DENSITY (range from 1=dense,
0=spread, default is derived from other params)

PL_ROUTABILITY_DRIVEN (on default)

PL_TIME_DRIVEN (on default)

PL_WIRELENGTH_COEF (0.25 default)

PL_RANDOM_GLBL_PLACMENT (off default)

45

Legalization Distance
PL_MAX_DISPLACEMENT_X (500um
default)
PL_MAX_DISPLACEMENT_Y (100um
default)

For detailed placement legalization,
specifies maximum distance to move cells
to remove overlap.

What if you have big macros?
NEED >=500um FOR SRAMs!

46

PL_RESIZER
Combines gate sizing with placement.
Lots of options for setup vs hold tradeoff.

47

Suboptimality Visualization

Recursive Bisection Placement: Feng Shui 5.0 Implementation Details, Agnitori et al, ISPD 2005.

Next Lecture
• See routing

49

