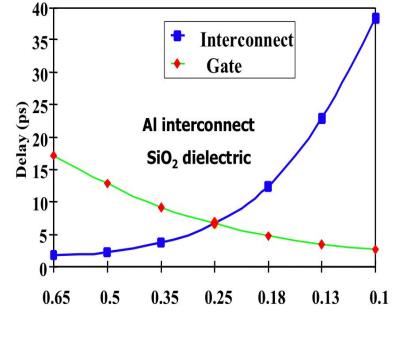
Lecture 11: Interconnect

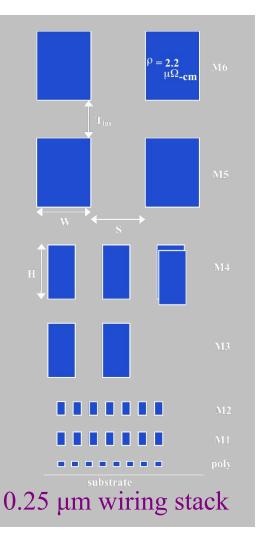
Matthew Guthaus Professor UCSC, Computer Science & Engineering <u>http://vlsida.soe.ucsc.edu</u> mrg@ucsc.edu

Today's Lecture

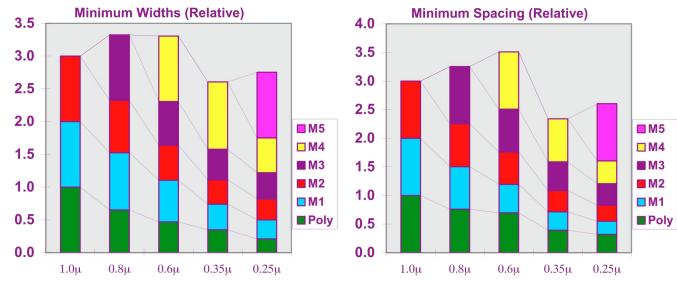

- Wiring or interconnections and their performance impact
 - Contribute to delay, RC
 - Coupling capacitance between wires
- Interconnect variation

3

Reverse Scaling of Interconnects


- Gate delays reduce with technology scaling
- Global interconnect delays increase with scaling
 - Interconnects must be included in analysis and optimization

Technology Generation

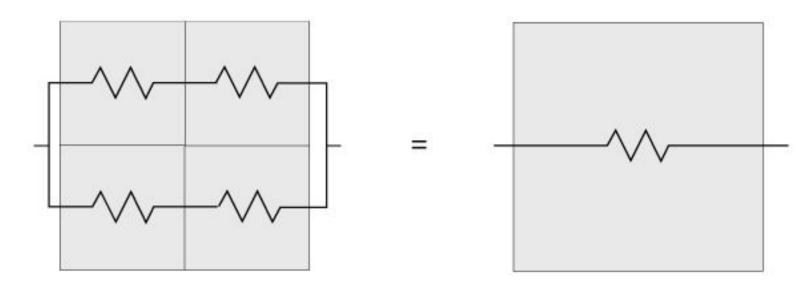


Interconnect: # of Wiring Layers

of metal layers is steadily increasing due to:

- Increasing die size and device count: we need more wires and longer wires to connect everything
- Rising need for a hierarchical wiring network; local wires with high density and global wires with low RC

Interconnect Parasitics


- Classes of parasitics
 - Capacitance
 - Resistance
 - Inductance
- Impact of interconnect parasitics
 - Increases propagation delay
 - Energy dissipation and power distribution
 - Reliability and signal integrity

Wire Resistance

Resistance of any "square" is roughly constant

Key: thickness is the same

 R_{-} *L/W

Sheet Resistance of Materials

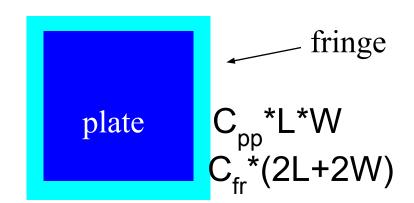
Representative

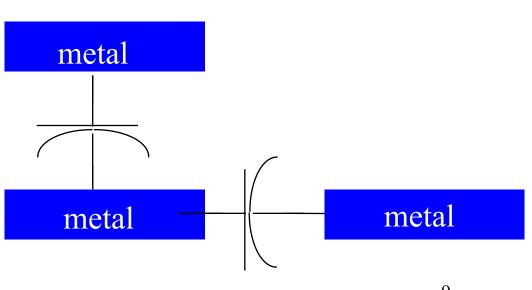
Material	Sheet Resistance (Ω/\Box)				
n- or p-well diffusion	1000 - 1500				
n^+, p^+ diffusion	50 - 150				
n^+, p^+ diffusion with silicide	3-5				
n ⁺ , p ⁺ polysilicon	150 - 200				
n^+, p^+ polysilicon with silicide	4-5				
Aluminum	0.05 - 0.1				

Table 91 Table - Resistances								
Layer	Resistivity (mohms/sq)							
Poly	48200							
Local interconnect	12800							
Metal1	125							
Metal2	125							
Metal3	47							
Metal4	47							
Metal5	29							
Deep nwell	2200000							
Pwell (in deep nwell)	3050000							
Nwell	1700000							
N-diffusion	120000							
P-diffusion	197000							
HV N-diffusion	114000							
HV P-diffusion	191000							
XHR poly resistor	319800							
UHR poly resistor	2000000							
LICON contact	15000							
MCON contact	152000							
VIA	4500							
VIA2	3410							
VIA3	3410							
VIA4	380							

Sky130 (note mohms)

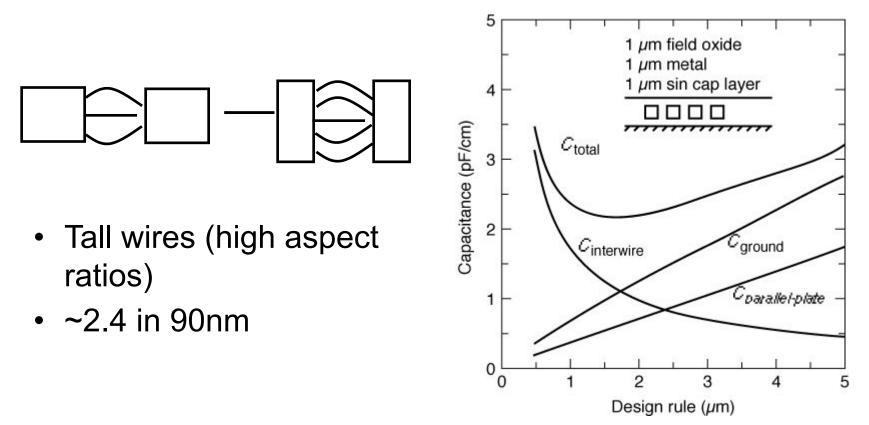
Sky130 Resistances


Split into two to be visible


Table 91 Table - Resistances								
Layer	Resistivity (mohms/sq)							
Poly	48200							
Local interconnect	12800							
Metal1	125							
Metal2	125							
Metal3	47							
Metal4	47							
Metal5	29							
Deep nwell	2200000							
Pwell (in deep nwell)	3050000							
Nwell	1700000							
N-diffusion	120000							
P-diffusion	197000							
HV N-diffusion	114000							
HV P-diffusion	191000							
XHR poly resistor	319800							
UHR poly resistor	2000000							
LICON contact	15000							
MCON contact	152000							
VIA	4500							
VIA2	3410							
VIA3	3410							
VIA4	380							

Wire Capacitance

- Two components
 - Parallel plate cap.
 - Fringe cap.
 - Units per mm usually
- Coupling
 - Intra-layer
 - Inter-layer



Coupling Capacitance

• To reduce interconnect resistance, thickness is not scaled as aggressively as the width of the interconnect

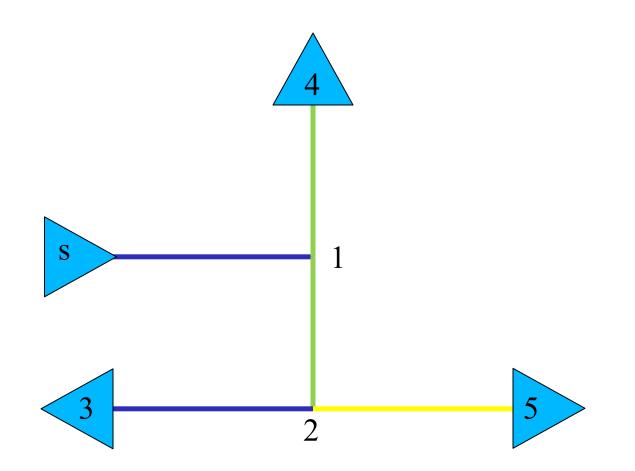
Sky130 Capacitances

NOTE: Adjacent capacitance depends on spacing! This will be done by "extraction".

Basic Capacitance - Parallel

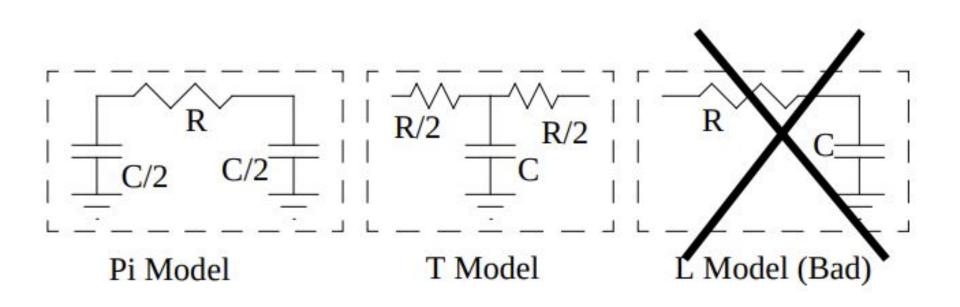
Table 95 Table - Capacitance - Parallel Metal4 Metal5 Metal1 Metal2 Metal3 Poly 94.1644 44.8056 24.4968 16.0552 10.0131 7.2085 Local interconnect 114.1970 37.5647 20.7915 11.6705 8.0265 15.0275 9.4789 Metal1 133.8610 34.5350 Metal2 86.1861 20.3321 11.3410 Metal3 84.0346 19.6269 Metal4 68.3252

Table 94 Table - Capacitance - Fringe Upward						Table 93 Table - Capacitance - Fringe Downward							
Interlayer fringe capacitance (upward direction) (aF/um)	Local interconnect	Metal1	Metal2	Metal3	Metal4	Metal5	Interlayer fringe capacitance (downward direction) (aF/um)	Poly	Local interconnect	Metal1	Metal2	Metal3	Metal4
Poly	25.138	16.691	11.166	9.18	6.3505	6.4903	Local interconnect	51.846					
Local interconnect		34.7	21.739	15.078	10.141	7.6366	Metal1	46.724	59.496				
Metal1			48.193	26.676	16.421	12.017	Metal2	41.222	46.277	67.045			
Metal2				44.432	22.332	15.693	Metal3	43.531	46.708	54.814	69.846		
Metal3					42.643	27.836	Metal4	38.105	39.709	42.563	46.382	70.522	
Metal4						46.976	Metal5	39.908	41.147	43.188	45.592	54.152	82.819

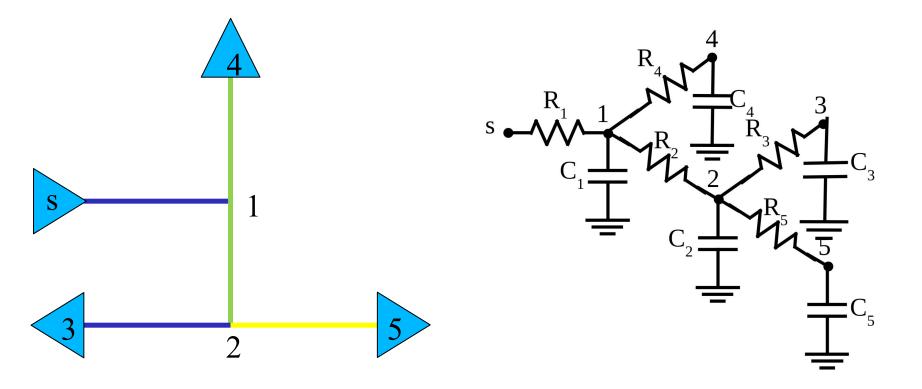


Interconnect Modeling: Elmore Again!

- Lumped capacitance model is what we use for device/gate analysis
- Lumped RC model
 - For simple one segment RC:
 - 50% Delay = 0.69*RC
 - 10-90% Slew = 2.2*RC
- Distributed RC line model
 - More accurate for interconnect analysis
 - 50% Delay = 0.38*RC
 - 10-90% Slew = 0.9*RC



Interconnect Delay

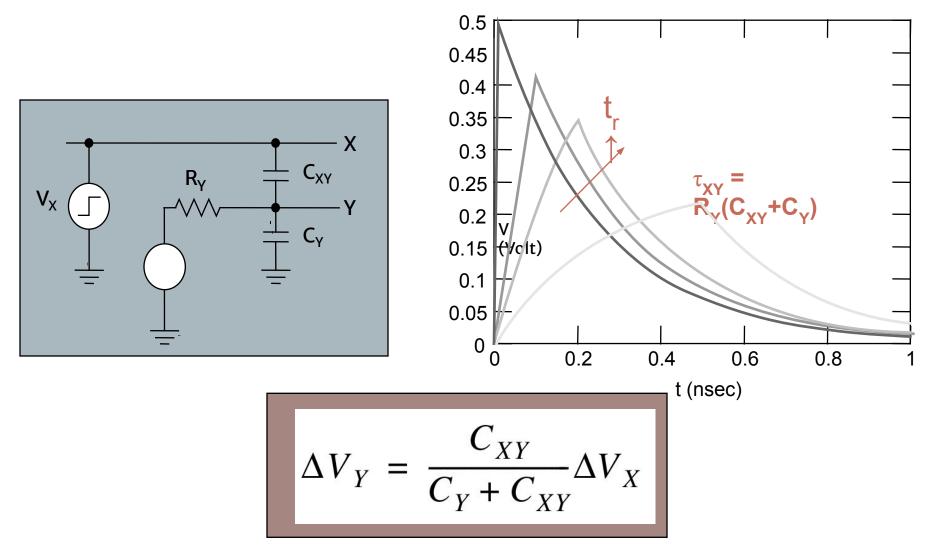


Equivalent Wire Models

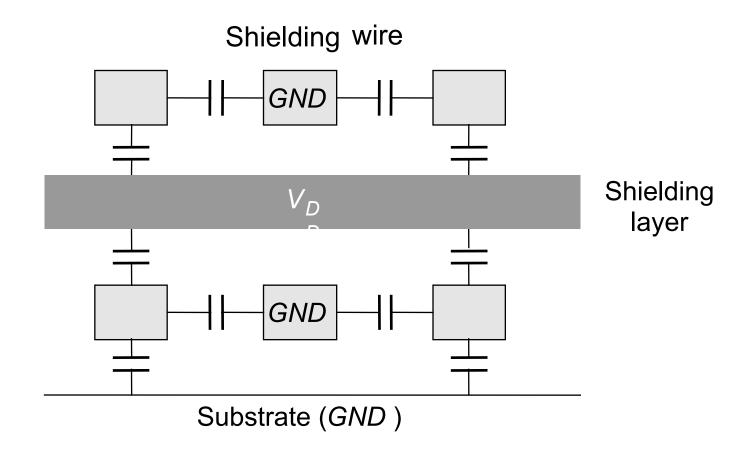
Wire Delay Modeling



Elmore Delay Calculation

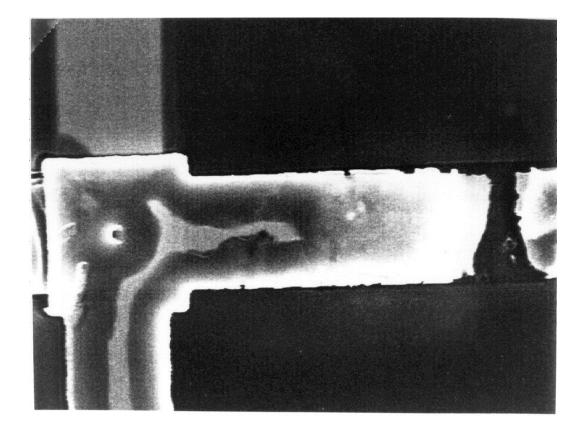

Method 1: per resistor 0.69*(R1(C1+C2+C3+C4+C5) + R2(C2+C3+C5) +R3C3)

Method 2: per capacitor 0.69*(R1C1 +(R1+R2)C2 +(R1+R2+R3)C3 +R1C4 +(R1+R2)C5)



Challenge: Capacitive Cross Talk

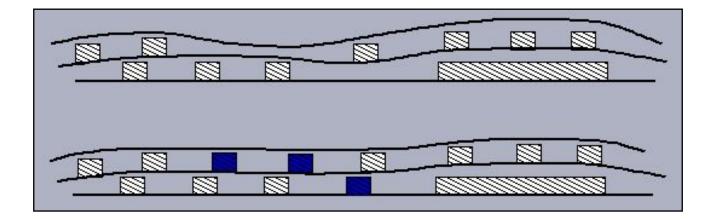
Shielding



Wiring problems

- Diffusion: changes in doping means variations in resistance, capacitance.
- Poly, metal: variations in height, width means variations in resistance, capacitance.
- Shorts and opens during manufacturing

Electromigration



Oxide and Metal Thickness Variation

Due to Chemical Mechanical Polishing (CMP)

More when we talk about "chip finishing"...

Next Lecture

See handout

