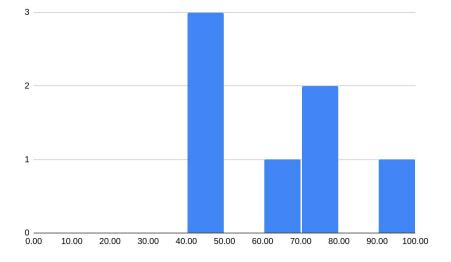

Lecture 07: OpenLane


Matthew Guthaus Professor UCSC, Computer Science & Engineering <u>http://vlsida.soe.ucsc.edu</u> mrg@ucsc.edu

Quiz 1

CSE 122 47% average

CSE 222A 64% average

Partial Credit Quiz 1

Resubmit PDF as quiz1.pdf to git repo. Will provide blank quiz as well in Slack.

Up to 20% partial credit.

Due this Friday 5pm

HW1 Part 2b Resubmit

We didn't have all the DRC checks enabled! In demo klayout/drc/sky130.lydrc change FEOL from false to true.

enable / disable rule groups
FEOL = false # front-end-of-line checks
BEOL = true # back-end-of-line checks
OFFGRID = true # manufacturing grid/angle checks

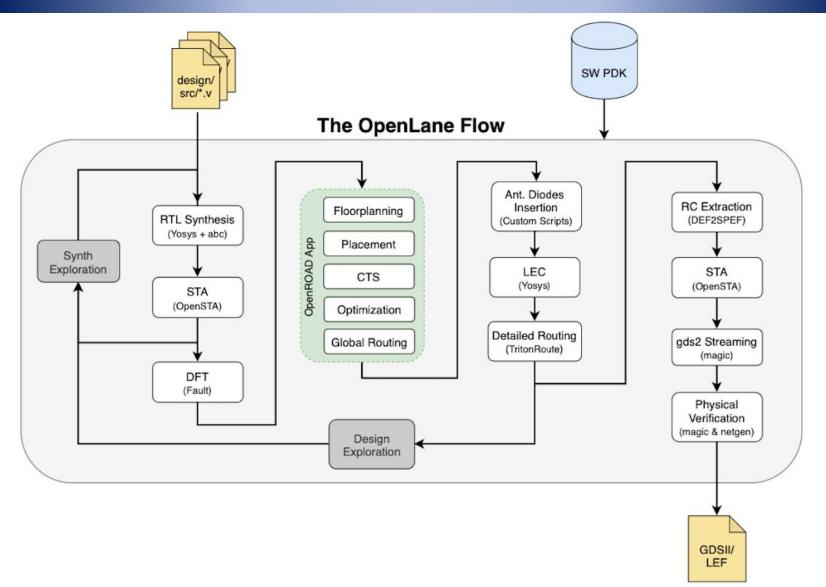
This was why drc4.gds also had an LVS issue. One error wasn't flagged.

Resubmit the GDS by Sunday 4/30 5pm. No penalty. No need to describe additional errors in part 2a.

Today's Lecture

- TCL
- Flow Steps and Control
- Design Directory Structure
- · OpenRoad GUI
- Project Configuration
- Design Space Exploration

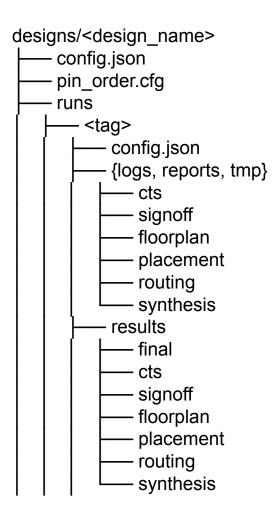
https://openlane.readthedocs.io/



Tool Command Language (TCL)

- https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
- Scripting (interpreted) language
 - Loops, variables, etc.
 - Regular expressions
- Tool commands are added
 - Links to C, C++, etc. code
- Used by almost every commercial EDA tool!
- OpenLane/scripts/tcl_commands
 - OpenLane interface sets up a lot of "defaults" in the technology
 - Examples: init_floorplan, place_io, run_sta, etc.
- OpenLane/scripts/openroad
 - OpenRoad provides commands for different tools
 - clock_tree_synthesis, detailed_placement

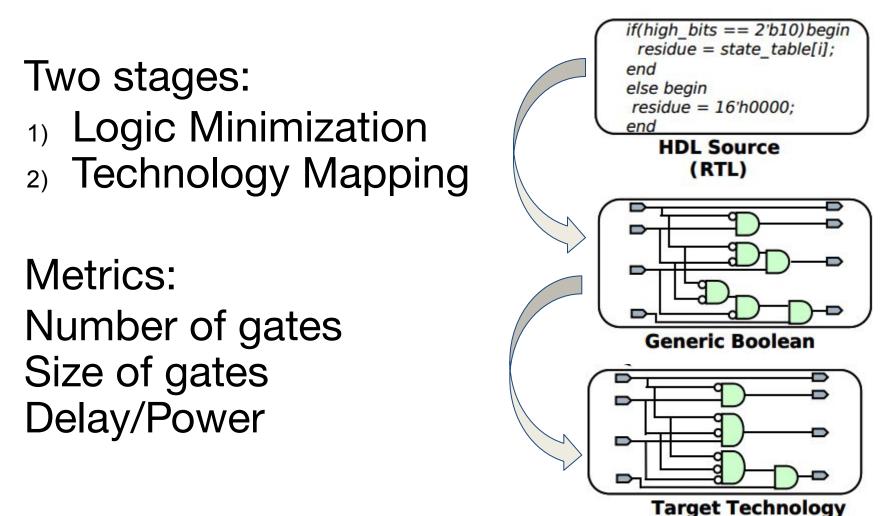
Flow Steps


Flow Control

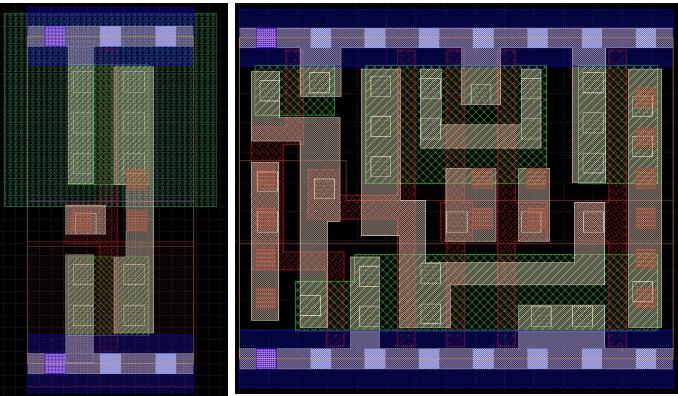
flow.tcl

	set steps [dict create \					
	"synthesis" "run_synthesis" \					
Arguments:	"floorplan" "run_floorplan" \					
-design	"placement" "run_placement_step" \					
-uesign	"cts" "run_cts_step" \					
-from	"routing" "run_routing_step" \					
-to	"parasitics_sta" "run_parasitics_sta_step" \					
-10	"eco" "run_eco_step" \					
-tag	"diode_insertion" "run_diode_insertion_2_5_step" \					
-tag	"irdrop" "run_irdrop_report_step" \					
-overwrite	"gds_magic" "run_magic_step" \					
	"gds_klayout" "run_klayout_step" \					
	"lvs" "run_lvs_step \$LVS_ENABLED " \					
	"drc" "run_drc_step \$DRC_ENABLED " \					
	"antenna_check" "run_antenna_check_step \$ANTENNACHECK_ENABLED " \					
	"cvc_rv" "run_erc_step"					

Design Directory Structure



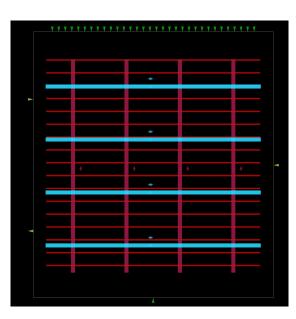
- Each design has a config.tcl (older) or config.json (preferred)
- Optional pin placement file
- Optional SDC (Synopsys Design Constraints) file


Synthesis

Goal: Map Verilog to gate-level netlist

Standard Cell Libraries

Fixed height cells Different logic functions (nand, mux, aoi221) Sequential cells (flip-flops and latches)


Floorplan

Goal: Create the high-level chip/block plan

Stages:

- 1) Determine chip/block area
- 2) IO placement
- 3) Block placement
- 4) Define standard cell rows
- 5) Power planning

Metrics: Area Area utilization

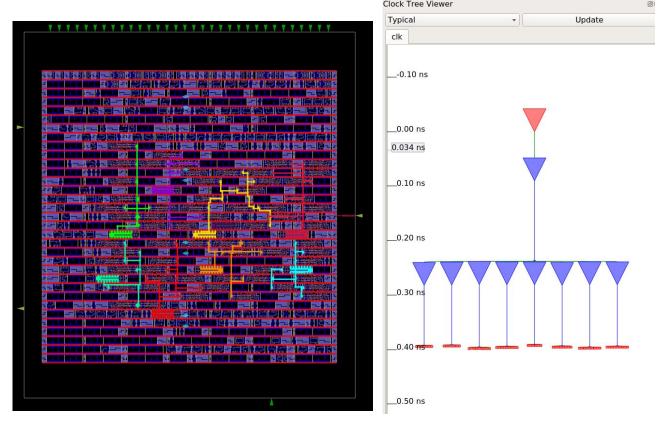
Placement

Goal: Determine locations of all logic gates

Stages:

- 1) Global Placement
- 2) Detailed Placement

Metrics: Minimize wire length Minimize congestion Minimize timing


	* * * * * * * * * * * * *	, , , , , , , , , , ,	* * * * * * * * *	¥ ¥ ¥ ¥
	- 		wi (重要) Wi	
ł				
•				

CTS

Goal: Determine clock buffer and wire locations

Metrics: Skew Power

Routing

Goal: Connect all signals on gates using multiple metal layers

Two stages:

- 1) Global Routing
- 2) Detailed Routing

Metrics: Wire length Congestion Delay Power

-			ŧ		
2 1997 199 2 1999 199 2 1999 199					

Static Timing Analysis (STA)

Goal: Evaluate timing (and power) of circuit

Evaluates minimum and maximum (hold and setup) times of all paths Static means it doesn't consider logic function Ideal or non-ideal clocks Run at each stage of design

Metrics: Delay Slack Dynamic power Leakage power

Remaining Steps

- Parasitics STA
- Engineering Change Order (ECO)
- **Diode Insertion**
- IR Drop
- **GDS** Generation
- Layout vs. Schematic (LVS)
- Design Rule Check (DRC)
- Antenna Check
- Circuit Validity Checks (CVC)

Project Discussion

Project Consult

Informal discussion with Jesse and/or I before you write a proposal. Due in 1 week.

Project Proposal 1-2 page proposal. Due in 2 weeks.

Demo!

Example TCL Scripts

Example config.json

Viewing reports and results

Using OpenRoad GUI

Next Lecture

- Cell libraries
- Next next lecture: Static Timing Analysis

