Lecture 04: Devices and CMOS

Matthew Guthaus
Professor
UCSC, Computer Science \& Engineering http://vlsida.soe.ucsc.edu
mrg@ucsc.edu

Today's Lecture

- Semiconductor Devices
- Diode
- Field Effect Transistor (FET)
- Width, Length and $\mathrm{R}_{\text {on }}$
- Body Connection
- Parasitic Capacitance and Resistance
- CMOS Review

The Diode

Cross-section of prajunction in an IC process

One-dimensional representation

diode symbol

Depletion Region

(a) Current flow.

$$
\phi_{t}=\frac{k \cdot T}{q}
$$

Drift is charge based
Diffusion is concentration based
N_{A} is concentration of acceptors
N_{D} is concentration of donors
n_{i} is "intrinsic concentration"

$$
\phi_{0}=26 \ln \left[\frac{10^{15} \times 10^{16}}{2.25 \times 10^{20}}\right] \mathrm{mV}=638 \mathrm{mV}
$$

Diode Current

(a) On a linear scale.

(b) On a logarithmic scale (fonward bias).

$$
I_{D}=I_{S}\left(e^{V_{D} \phi_{T_{-1}}}\right) \quad \phi_{t}=\frac{k \cdot T}{q}
$$

Switch Model of CMOS Transistor

Threshold Voltage: Concept

Transistor in Linear

If you use a voltage across the "resistor" within a range, it behaves like a resistor: Vds < Vgs - Vth

MOS transistor and its bias conditions

Transistor in Saturation

Current-Voltage Relations

Linear Region: $\mathbf{V}_{\mathrm{DS}} \leq \mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathbf{T}}$

$$
\left.I_{D}=k_{n}^{\prime} \frac{W}{L}\left(\left(V_{G S^{-}}-V_{T}\right) V_{D S}\right)^{-\frac{V_{D S}}{2}}\right)
$$

with

$$
k_{n}^{\prime}=\mu_{n} C_{o x}=\frac{\mu_{n} \varepsilon_{o x}}{t_{o x}} \quad \begin{aligned}
& \text { Process Transconductance } \\
& \text { Parameter }
\end{aligned}
$$

Saturation Mode: $\mathrm{V}_{\mathrm{DS}} \geq \mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{T}}$

$$
I_{D}=\frac{k_{n}^{\prime}}{2} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

Mobility of electrons is $\sim 2-3 x$ that of holes.

Transistor as a Switch

$$
\begin{aligned}
& R=V d s / I d \\
& \text { Ron } \cong \text { average(R0, Rmid) }
\end{aligned}
$$

Width, Length, and Ron

$$
\begin{aligned}
& I_{D}=k_{n}^{\prime} \frac{W}{L}\left(\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}{ }^{2}}{2}\right) \\
& I_{D}=\frac{k^{\prime}}{2} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
\end{aligned}
$$

Ron \propto Vds / Id
Id \propto W / L
Ron $\propto($ Vds * L) / W

Back-Gate Biasing

If a pwell or nwell (or bulk), can bias the well to adjust threshold.

Static CMOS

PUN and PDN are Dual Networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high

$$
P \text { Y } Y=X \text { if } A \text { and } B
$$

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS switch closes when switch control input is low

$$
X \xrightarrow{\square}
$$

$$
Y=X \text { if } \bar{A} \text { OR } \bar{B}=\overline{A B}
$$

PMOS Transistors pass a "strong" 1 but a "weak" 0

Complementary CMOS Logic Style Construction (cont.)

- PUP is the DUAL of PDN
(can be shown using DeMorgan's Theorem's)

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

- The complementary gate is inverting

AND = NAND + INV

Example Gate: COMPLEX CMOS GATE

Example: Sky130 a21bo Gate

(NOTE: This is the logical schematic, not a transistor le schematic!)

Parallel Plate Capacitance

The Gate Capacitance

(a) Top view.
(b) Cross-section

$$
C_{\text {gate }}=\frac{\varepsilon_{o x}}{t_{o x}} W L \quad \begin{aligned}
& \mathrm{C}=\varepsilon \mathrm{A} / \mathrm{d} \\
& \mathrm{~A}=\mathrm{WL} \\
& \mathrm{~d}=\mathrm{t}_{\mathrm{ox}} \\
& \varepsilon=\varepsilon_{\mathrm{ox}}
\end{aligned}
$$

Diffusion Capacitance

Folding Transistors

Next Class

- Tuesday: Jesse lecture
- Help with klayout
- OpenRAM memory generation
- Review Q\&A
- Thursday: Quiz 1

